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synopsis 
The measurement of stresss relaxation following steady-state shearing is particularly 

useful in the terminal relaxation zone, where the rheological properties are molecular 
weight dependent. This paper contains a description of the method as applied to  molten 
polymers, and an empirical function found to be useful for fitting the data. Three ex- 
amples are given to  demonstrate some direct and simple applications. First, the de- 
crease of viscosity with increasing shear rate may be estimated by simply replotting the 
experimental data. Second, extrapolation of calculated viscosities to very high shear 
rates is shown to lead to a possible explanation for melt fracture. Third, the true New- 
tonian viscosity can be estimated from measurements conducted at a nonzero shear 
rate. 

Introduction 

In studying the rheological properties of soft materials such as polymer 
melts, one has available a wide choice of experimental methods. These 
have been well summarized by Ferry.' The use of several techniques on 
the same material is usually redundant, although occasionally necessary 
to cover a broad time scale. There is, naturally, a diversity in the methods 
according to equipment requirements, time needed to make a measure- 
ment, and simplicity of calculations leading to a desired result. 

It is intended in this paper to show how one such method, namely that of 
stress relaxation following steady-state shearing, can be used to reveal 
considerable useful information with relatively little effort. The general 
approach is aimed toward practical applications, but it is often true that 
approximate treatments can also provide insight into the detailed molec- 
ular processes, as will be illustrated by the example of melt fracture. 

Discussion of the Method 

The measurement of relaxation following steady flow is particularly use- 
ful in the terminal relaxation zone, where the rheological properties are 
molecular weight-dependent. The method was proposed some time ago 

* Presented at West Coast Regional Meeting of the Society of Rheology at Pasa- 
dena, California, February 2, 1962. 
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by Schremp, Perry, and Evans2 but has for some reason found little sub- 
sequent use, and that mainly by Watkins.3~4 In  the terminal region the 
method has, for most needs, several advantages over the more frequently 
used procedure of measuring stress relaxation following the sudden applica- 
tion of a strain. First, the steady-flow method weights the relaxation dis- 

Fig. 1. Sectioned view of the cone-and-plate viscometer. 

tribution toward longer times, which is especially useful when one is inter- 
ested in the effects of molecular weight distribution. The long-time weight- 
ing can be clearly Seen by examining the relaxation expressions resulting 
from use of the usual phenomenological models. For the stress ~ ( t )  at 
time t following cessation of flow at a steady shear rate Yo, one has 

(1) -- .(‘I = q(t> = J: r ~ ( 7 ) e - t ’ ~  d In 7 
Y U  m 
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Similarly, for the relaxation of stress u8(t) following the sudden application 
of a strain yo, 

Thus, eq. (1) has the relaxation distributioii H(7)  weighted with an addi- 
tional relaxation time 7. It is easy to obtain u8(t)/yo by differentiation, 
if needed: 

(3) - a* (0 = - "31 
7 0  dt Y o  

The second attractive feature of the steady-flow method is that it avoids 
the nonzero loading time inherent in the sudden-strain method. As 
will be discussed shortly, the initial portion of the steady-flow record in- 
volves only a change in slope, not a sudden change in stress level. While 
this record probably does not contain any more information, it does pro- 
vide data in a somewhat less scattered form. 

A third possible advantage of the steady-flow method lies in its experi- 
mental simplicity. For the measurements to be discussed in this paper, a 
more or less conventional cone and plate apparatus was used. Designed 
with advice from Dr. John P. Tordella, it is shown sectioned in Figure 1. 
The lower plate can be quickly dropped out by the pneumatic lift under- 
neath, which shortens to a few minutes the time required to begin measure- 
ments on a disk-shaped sample. The rotatable upper shaft is held a t  a 
fixed vertical position by a pin passing through it and resting on the upper 
bearing. At the top of the shaft is a mirror-pulley combination. The 
multifaced aluminum mirror is used to reflect a parallel light beam into a 
Beckman Photo-Pen recorder so that creep and creep-recovery experi- 
ments may be performed on the same sample to be used for the relaxation 
measurements. The novelty of this apparatus lies mainly in the way by 
which the relaxing stress is measured. To do this, a rod is attached at  right 
angles to the upper part of the shaft. After a condition of steady shearing 
has been achieved, this rod is allowed to strike a waiting strain cell. Stress 
buildup recorded by the strain cell is exactly equal to the stress decay 
suffered by the molten polymer. This scheme eliminates the usual torsion- 
rod mounts, and also allows the sample to be thermostatted accurately, 
since only one shaft protrudes from the instrument. 

Since the 
steady-state viscosity, qo, can be measured just prior to the beginning of 
relaxation, the ratio of stress to shear rate begins a t  qo and decays to zero. 
Hence the viscosity is the scale factor. 

Empirical Representation 

There is no need to calibrate the stress scale separately. 

An empirical expression which has found some use for representing re- 
tarded elasticity data is the following:5,6 

J ( O  = J ,[ I  - exp { -(t/7dnj I (4) 
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t OR 2, SEC. 

Fig. 2. Form of the relaxation curve and the distribution of relaxation times. Calculated 
from eqs. (5) and (6) of the text for To = 1, r0 = I, m = 0.5, and 6 = 0.05. 

where J( t )  is the recoverable elastic compliance a t  time t, J, is the total 
time dependent compliance, and 71 and n are parameters. The exponent 
n is usually around 0.5. 

For purposes of computation, extrapolation, and data storage it was 
considered desirable to attempt a similar empirical fit of steady-flow stress 
relaxation data. Even though there is a superficial resemblance between 
the relaxation and creep recovery curves, it was found to be necessary to 
add a small increment 6 to the time before a good fit could be achieved. 
The resulting expression is: 

where v(+~) is the steady-state viscosity at the shear rate -jo prevailing be- 
fore relaxation begins. The adjustable parameters are m, 6, and 70 .  The 
necessity of adding an increment 6 to the time may be explained qualita- 
tively by consideration of the first derivative of the stress relaxation curve. 
As mentioned before, this slope a t  zero time is the negative of the so-called 
instantaneous modulus, and thus must be finite. However, without the 6 
the derivative of eq. (5)  is infinite at zero time. 

An example will probably show most clearly the effects of the parameters. 
In  Figure 2 is shown a hypothetical relaxation curve, cp(t), constructed 
from eq. (5 )  by using a unit viscosity and reasonable values of 70, m, and 6. 
The,distribution of relaxation times, H ( T ) ,  is obtained by inversion of eq. 
(1). When m = 0.5, H ( T )  is obtainable directly as the inverse Laplace 
transform of cp(t). This inversion yields 
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For m # 0.5 the inversion is more involved, requiring computer work, as 
recently discussed by Peticolas.' 

The value of 6 affects the 
position of the maximum and the shape of the curve at short times. The 
average relaxation time r0 affects the curve shape at  long times. A de- 
crease in m causes an increased half width, though the exact relation is 
complicated. 

For practically determining H ( r )  from the experimental relaxation data, 
it is not difficult to apply the usual approximation methods involving first 
and higher derivatives,' since eq. (5 )  may be differentiated as much as 
necessary. 

The lower curve of Figure 2 is a plot of eq. (6). 

In order to fit eq. (5 )  by hand, it is best written in the form 

Log log [ ~ ( + ~ ) / c p ( t ) ]  is plotted against log t and a line passed through the 
points at large values of f. The slope is taken as a trial m and the value of 
log log [ r ] ( + O ) / c p ( t )  ] at t = 1 taken as 1/2.3r0". The instantaneous modulus, 
Go, is determined from the initial slope of cp(t) versus t. From Go a trial 
value of 6 can be found : 

GO = T . J ( + ~ ) ~ T O - " ~ ~ - '  (7) 

When the first values for m, T O ,  and 6 have been obtained, then log 
(log [7(+,J/cp(t>] + (6m/2.3r0")) is plotted against log (t  + S ) ,  and the 
process repeated until assumed and calculated parameters agree. Con- 
vergence is fast and for a number of different polymer melts ~ ( t )  can be 
fitted to within the error made in reading the chart record. Both q(Y0) and 
ro are rather directly dependent on the molecular weight of the polymer. 

For 
narrow molecular weight distributions m will usually be in the vicinity of 
0.5, down to perhaps 0.3 for broad distributions. 

It is interesting that if a hypothetical relaxation curve is constructed with 
m = 0.5, and decomposed into a discrete distribution of relaxation times, 
these times will follow a Rouse-like8 sequence. Thus their values will be 
approximately proportional to members of the sequence 1, l/4, l/sl l/~e, etc. 
A more rigorous connection between the empirical function and its model 
counterpart, 

The 6 will normally be small, typically ranging from 0.01 to 0.05. 

P) 

c p ~ >  = C riGt exp f - ( t / ~ ~ ) )  
; = I  

has not yet been worked out. 
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Example : Non-Newtonian Properties 

A frequent problem associated with polymer melts and solutions is the 
specification of rheological properties such as the viscosity or elastic com- 
pliance at  nonzero shear rates. 

By using current viscoelastic theory and reasonable approximations it is 
possible to get a good idea of such non-Newtonian behavior without actually 
subjecting the material to extreme conditions. This is done by making 
direct use of the stress relaxation or creep-recovery curves. To obtain the 
necessary expressions, the molecular viscoelastic theory of Paog will be 
used. Accordingly, the viscosity at shear rate y is written 

where Y~ represents the recoverable elastic strain, which need not be written 
out here. If eq. (8) is compared with eq. (1) for (p(t), the integral portions 
are identical except for the step functions. If the approximation is made 
that, when t = +-I, 

(1 + -+2>-1 LZ 1 - exp { - ( t / r ) ]  

then one can integrate eq. (8) and obtain the approximate result: 

s(?) (1 + Y R 2 )  [T(?O) - q(t = ?-'I 1 (9) 
Assuming that r](Y0) is the Newtonian viscosity and that Y~ is small, the 
following convenient form results : 

.I I io ioo to3 . 01 
SHEAR RATE, ?, SEC-' 

Fig. 3. Non-Newtonian viscosity for a polyethylene sample as obtained with (0): 
cone-and-plate viscometer; ( X )  a gas-pressured capillary rheometer; (A) a piston cap- 
illary rheometer. The line was calculated from stress-relaxation data by using eq. (10) 
of the text. 
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Use of this equation for quickly estimating high shear-rate viscosity from 
the stress relaxation curve requires only a replotting. The Newtonian 
viscosity, r](+,J, minus the value of the relaxation curve a t  a time equal to 
the reciprocal shear rate is plotted agaiiist + = t - l .  Figure 3 shows such 
a plot for a low density polyethylene, melt index 2.1, a t  150°C. The 
capillary data were obtained'O with the use of both gas and piston rheom- 
eters. The circles are measured viscosities obtained with the cone-and- 
plate viscometer, and the line is calculated from the empirical form for the 
stress-relaxation data [eq. (5)  1. It is apparent from this use of the empir- 
ical function that it could also be used as a primary representation of vis- 
cosity-shear rate data itself. 

It is appropriate to mention here an analogous approximation method to 
give the shear-rate dependence of the steady-state recoverable elastic com- 
pliance, J I ( + ) .  The equation for this, as derived from Pao's theorys is 

where L(T) is the distribution of retardation times. By using the same 
level of approximation that gave eq. (9) for the viscosity, one finds for the 
elastic compliance : 

Je(+) J ( t  = +-') (12) 
If eq. (4) is used to represent J( t ) ,  one then has 

J e ( + )  Je (+o)  [1 - exp { - (YTJ-~) I (13) 

A concise way of displaying both the viscosity [eq. (9)] and elasticity 

.Oil I I I I 

102 lo3 lo4 lo ' /O 

STRESS, DYNE - CM -2 

Fig. 4. Dependence of the total recoverable strain for a polyethylene sample upon ap- 
plied shear stress, results obtained from (0) the cone-and-plate measurements; (A) extru- 
date swelling by a capillary with a length/diameter ratio of 195. The line waa calculated 
from stress-relaxation and creep-recovery data by use of eq. (15) of the text. 
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[eq. (12)'J results is afforded by the calculated total recoverable strain. 
This is equal to the stress times the total compliance: 

~(- i )  = ~ [ J o  + Je(-i) 1 (14) 
The total compliance is made up of the "instantaneous" part Jo and the 
"time-dependent" part Je(y ) .  Writing the stress as the product of the 
shear rate and viscosity, and substituting G0-l for .lo, one has 

= -i~[Go-' + Je1 (15) 
Figure 4 shows y calculated using the experimental stress relaxation and 
creep recovery data from the same polyethylene as before. Extrapolation 
of the empirical expressions indicates that y will rise to a maximum and 
ultimately return to a value of unity. This maximum can be seen experi- 
mentally, although the actual limiting strain probably cannot he predicted 
accurately by the empirical approach. 

Example : Limiting Behavior at High Shear Rates 

Using eqs. (5) and (lo), the viscosity at a shear rate + is approximately 

If this is expanded at high shear rates, the viscosity approaches the leading 
term, or 

Referring to eq. (7) this can be rewritten as 

d-i) - Go/+ (16) 

Such an expression is unsatisfactory as it stands since a stress is being 
equated to a modulus. In other words, if we designate the proper form of 
eq. (16) as 

then eq. (16) requires ym, a strain term, to be unity. Retaining the form 
of eq. (17) implies a limiting stress equal to ymGo. 

At fairly high shear rates there is a phenomenon in capillary extrusion 
known as melt fracture. l1  There is experimentally a critical stress a t  which 
this fracture occurs and it is tempting to associate with it the limiting stress 
as indicated by the viscosity extrapolation. Figure 5 shows a plot of the 
critical shear stress against the instantaneous modulus for several poly- 
mers.'2 The correlation is reasonably good, and leads to a value of 5 for 
the strain at fracture. This agrees with the result obtained experimentally 
by Spencer.13 Such a correlation encourages a possible explanation of melt 
fracture which does not involve concepts of inlet instabilities or other geo- 
metric causes, as have been proposed from time to time. 

d-i) - TmGO/f (17) 
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INSTANTANEOUS MODULUS, DYNE-W-2 XIO -4  

Fig. 5. Comparison of fracture stress using 3.65 length/diameter ratio capillary with 
instantaneous modulus for various polymers: ( 1 )  polyethylene a t  150°C., M.I. 2.1, den- 
sity 0.917; (2) polyethylene a t  15OoC., M.I. 2.0, density 0.923; (3) polyethylene a t  
150"C., M.I. 2.0, density 0.914; ( 4 )  linear polyethylene a t  15OoC., M.I. 0.50, density 
0.955; (6) poly(methy1 methacrylate) a t  200°C.; (6) high polymer of formaldehyde 
(polyoxymethylene) at  200°C. 

! SHEAR RATE AT 
i MELT FRACTURE 
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j0-2 /o-' I 10 103 10' 

t - ' 0 4  P, SEC-' 
Fig. 6. Dependence of shear modulus on shear rate for a polyethylene sample. Calcu- 

lated from stress relaxation data by use of eq. (3) of the text. 

Figure 6 shows the relaxation modulus, us(t) /ro,  plotted against reciprocal 
time or, nearly, shear rate, for the same polyethylene as before. This was 
calculated by using eqs. (3) and (5), and can therefore show only a plateau 
at short times, though in this range there should begin another rise through 
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the glass transition. The height of the plateau is the instantaneous 
modulus. 

Since coordinated center-of-inass niotiorl is becoming impossible as the 
glass transition is reached, one may say that the probable cause of melt 
fracture is the flow of clusters involving more than one molecule. This is, 
in fact, a rupture or yield and thus requires the large shear strain of some 
five units. The experimental shear rate at which melt fracture occurs is 
shown as a vertical dashed line. It is assumed that the rise through the 
glass transition would begin shortly thereafter, as shown by the dashed 
curve. For more accurate representation at these short times, some im- 
provement of the empirical function would be needed, though it is not 
indicated by the requirement of fitting the experimental data. 

Example : True Newtonian Viscosity 

When viscosities are measured with mechanical apparatus, there must 
necessarily be some flow of the sample. For high molecular weight poly- 
mers this nonzero shear rate, even though quite small, may already be 
large enough that the material is non-Newtonian. 

By assuming correctness of the hydrodynamic theory at low shear- 
rates, it is often possible to calculate a true zero shear-rate viscosity. At 
a small shear rate f o  the viscosity is, by eq. (8), 

where H*(r)  represents the relaxation distribution which would be ob- 
tained under true zero shear-rate conditions. From stress relaxation meas- 
urements made after steady flow at a shear rate fo ,  one would calculate an 
experimental H ( T ) ,  so that 

(19) 

(20) 

(21) 

(22) 

Equation (22) contains an additive correction term involving a fairly 
high moment of the relaxation distribution. It is possible to derive a 
general expression for the evaluation of any moment of the relaxation 
distribution in terms of experimental quantities. (See Appendix.) It is 

q ( f 0 )  = JZm d ~ ( T ) d  In T 

T H * ( T )  = TH(T)[1 + f o 2 T 2 ]  

To  = JZm T H * ( T ) ~  In 7 

70 = ~ ( 9 0 )  + ,io2JTm ~ ~ H ( . r ) d  In 7 

Thus, equating the integrands of eqs. (18) and (19), one has 

At a hypothetical zero shear rate the true Newtonian viscosity would be 

Putting eq. (20) into this expression one obtains 

(23) T 2 + u - n  
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Now, by choosing n = 1 and v = 0, eq. (22) is rcduced by eq. (23) to 

710 = d"j) + ,iU'So- ( P ( W  (24) 

If the empirical function, eq. (5 ) ,  is now used, and very small terms neg- 
lected, eq. (24) may be integrated to  the form 

(25) 

In Table I the magnitude of this correction is shown for a none-too- 
drastic example-a linear polyethylene with aw = 1.2 X lo5, measured 
at, 173 "C. 

TABLE I 
Calculated True Newtonian Viscosity 

T($o), poise X 10-6 $0, sec .-l To(calc.), poise X 10-6 

0.046 2.60 2.82 
0.131 2.29 2.76 

Appendix 

Derivation of eq. (23) is as follows. 
The integral I is defined as 

I = S," t'(d"p/dt")dt 

where 

p = JZm T H ( T )  exp { - (t/.)}d ~n 7 

Taking the nth derivative, 

Then 

I = t"[(-l)"f2.fS_mm T ~ - * H ( T )  exp { - ( t /T ) )d  In ~ ] d t  

or 

I = (-1)"+2f:m rl-"H(r) [A" t"e-t/' dt]d In T 

Now, since 

S," tVe-'Ir dt = v!7~+' 

one has then eq. (23) : 
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Incidentally, this result is useful for experimentally determining various 
moments of the molecular weight distribution as previously derived. l4  

In that reference the following equation was ohtained to relate the ath 
moment of the weight distribution to the mechanical model: 

where p is a constant for the sample, involving a,,,, the sample viscosity, 
and temperaturc. By using eq. (23) this expression becomes, for n = 0,  

In  this form it is convenient for numerical evaluation. 

Reference to a company or product name does not imply approval or recommendation 
of the product by the U. S. Department of Agriculture to the exclusion of others that may 
be suitable. 
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RbumQ 
La mesure de la tension de relaxation cons6cutive A un cisaillement stationnaire 

particulierement utile dans la zone de relaxation terminale oii les propri6t6s rh6ologiques 
dependant du poids mol6culaire. Cette publication contient une description de la 
m6thode te!le qu'elle est appliqu6e aux polymbres fondus et une fonction empirique qui 
s'est av6rt5e utile pour I'adaptation des r6sultate. On donne trois exemples qui d6mon- 
trent quelques applications simples et  directes. En premier lieu, la diminution de 
viscosit6 en augmentant la vitesse de cisaillement peut &re estim6e en reportant graphi- 
quement les r&ultata expbrimentaux. En second lieu, on montre que I'extrapolation 
des viscosit4s calcul6es pour des vitresses tr&s 6lev6es de cisaillement conduit A une 
explication possible des ruptures A la fusion. En trois&me lieu, on peut estimer la vis- 
cosit6 newtonienne vraie au d6part de mesures conduites A une vitesse de cisaillement 
nulle. 



Zusammenfassung 
Die Messung der einer stationaren Scherung folgenden Spannungsrelaxation ist bei 

der Endrelaxation, bei welcher die rheologischen Eigenschaften vom Molekulargewicht 
abhangig sind, von besonderem Nutzen. Die vorliegende Arbeit gibt eine Beschreibung 
der auf geschmolzene Polymere angewandten Methode und eine zur Einordnung der 
Daten gut brauchbare empirische Funktion. An drei Beispielen werden einige direkte 
und einfache Anwendungsmoglichkeiwn gezeigt. Erstens kann durch eine einfache 
Neuauftragung der experimentellen Daten die Viskositataabnahme mit steigender 
Scherungsgeschwindigkeit bestimmt werden. Zweitens fiihrt die Extrapolation der 
berechneten Viskositaten auf sehr hohe Scherungsgeschwindigkeit zu einer mcglichen 
Erklirung fur den Bruchvorgang in der Schmelze. Drittens kann durch Messungen bei 
einer von Null verschiedenen Schertmgsgeschwindigkeit die wahre Newtonsche Vis- 
kositat bestimmt werden. 
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